- 丛书名 : Control, Robotics and Sensors
- 中图分类号: TP2
- 语种: ENG
- 出版信息: The Institution of Engineering and Technology 2020 327页
- EISBN: 9781785618314
- PISBN-P: 9781785618307
- DOI:https://dx.doi.org/10.1049/PBCE126E
- 原文访问地址:
KG评星
知识图谱评星,是一种基于用户使用的评价体系,综合图书的评论数量、引文数量、Amazon评分以及图谱网络中节点的PageRank值(即考虑相邻节点数量和重要性)等多种因素计算而得出的评价数值。星级越高,推荐值越高。CAT核心级
核心学术资源(CAR)项目作为教图公司推出的一项知识型服务,旨在打造一套科学、有效的图书评价体系,并协助用户制定相应的馆藏建设方案。CAR项目调查和分析12所世界一流大学的藏书数据,以收藏学校的数量确定书目的核心级,核心级越高,代表书目的馆藏价值越高。选取核心级在三级以上,即三校以上共藏的图书作为核心书目(CAT)。Robotic systems have experienced exponential growth thanks to their incredible adaptability. Modern robots require an increasing level of autonomy, safety and reliability. This book addresses the challenges of increasing and ensuring reliability and safety of modern robotic and autonomous systems. The book provides an overview of research in this field to-date, and addresses advanced topics including fault diagnosis and fault-tolerant control, and the challenging technologies and applications in industrial robotics, robotic manipulators, mobile robots, and autonomous and semi-autonomous vehicles. Chapters cover the following topics: fault diagnosis and fault-tolerant control of unmanned aerial vehicles; control techniques to deal with the damage of a quadrotor propeller; observer-based LPV control design of quad-TRUAV under rotor-tilt axle stuck fault; an unknown input observer based framework for fault and icing detection and accommodations in overactuated unmanned aerial vehicles; actuator fault tolerance for a WAM-V catamaran with azimuth thrusters; fault-tolerant control of a service robot; distributed fault detection and isolation strategy for a team of cooperative mobile manipulators; nonlinear optimal control for aerial robotic manipulators; fault diagnosis and fault-tolerant control techniques for aircraft Systems; fault-tolerant trajectory tracking control of in-wheel motor vehicles with energy efficient steering and torque distribution; nullspace-based input reconfiguration architecture for over-actuated aerial vehicles; data-driven approaches to fault-tolerant control of industrial robotic systems.